Interpreting Neural Networks to Improve Politeness Comprehension

نویسندگان

  • Malika Aubakirova
  • Mohit Bansal
چکیده

We present an interpretable neural network approach to predicting and understanding politeness in natural language requests. Our models are based on simple convolutional neural networks directly on raw text, avoiding any manual identification of complex sentiment or syntactic features, while performing better than such feature-based models from previous work. More importantly, we use the challenging task of politeness prediction as a testbed to next present a much-needed understanding of what these successful networks are actually learning. For this, we present several network visualizations based on activation clusters, first derivative saliency, and embedding space transformations, helping us automatically identify several subtle linguistics markers of politeness theories. Further, this analysis reveals multiple novel, high-scoring politeness strategies which, when added back as new features, reduce the accuracy gap between the original featurized system and the neural model, thus providing a clear quantitative interpretation of the success of these neural networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strategies Used in Translation of Comedies with Emphasis on Politeness

The present study sought to investigate the translation strategies in an American sitcom in Iranian EFLclasses with emphasis on politeness. The participants were 50 male and female Iranian undergraduateB.A. and M.A. students majoring in English Translation, and English language teaching at the IslamicAzad University, North Tehran. The participants were administered three tests. A multiple choic...

متن کامل

Comparison of Genetic and Hill Climbing Algorithms to Improve an Artificial Neural Networks Model for Water Consumption Prediction

No unique method has been so far specified for determining the number of neurons in hidden layers of Multi-Layer Perceptron (MLP) neural networks used for prediction. The present research is intended to optimize the number of neurons using two meta-heuristic procedures namely genetic and hill climbing algorithms. The data used in the present research for prediction are consumption data of water...

متن کامل

Broad Context Language Modeling as Reading Comprehension

Progress in text understanding has been driven by large datasets that test particular capabilities, like recent datasets for reading comprehension (Hermann et al., 2015). We focus here on the LAMBADA dataset (Paperno et al., 2016), a word prediction task requiring broader context than the immediate sentence. We view LAMBADA as a reading comprehension problem and apply comprehension models based...

متن کامل

Modeling of Texture and Color Froth Characteristics for Evaluation of Flotation Performance in Sarcheshmeh Copper Pilot Plant, Using Image Analysis and Neural Networks

Texture and color appearance of froth is a discreet qualitative tool for evaluating the performance of flotation process. The structure of a froth developed on the flotation cell has a significant effect on the grade and recovery of copper concentrate. In this work, image analysis and neural networks have been implemented to model and control the performance of such a system. The result reveals...

متن کامل

روشی جدید برای اختفای خطا در فریم‌های ویدئو با استفاده از شبکه‌ عصبی RBF

Transmission of compressed video over error prone channels may result in packet losses, which can degrade the image quality. Error concealment (EC) is an effective approach to reduce the degradation caused by the missed information. The conventional temporal EC techniques are always inefficient when the motions of the video object are irregular. In this paper, in order to overcome this problem,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016